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RESUME.

ABSTRACT. The goal of any clustering algorithm is to find the optimal clustering solution with
the optimal number of clusters. In order to evaluate a clustering solution, a number of validity
indices are used during or at the end of a clustering process. They can be internal, external or
relative. In this paper, we provide two main contributions: First, we present an experimental
study comparing the major relative indices in the context of document agglomerative cluster-
ing. The objective is to highlight the limits of the existing indices for identifying both the optimal
clustering solution and the optimal number of clusters in real datasets. Second, we explore the
feasibility of using the relative indices as stopping criteria in agglomerative clustering algo-
rithms. We present a new method that enhances the clustering process with context-awareness
to improve their reliability for such utilization.
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1. Introduction

Organizing a large set of documents into a number of clusters can highly improve
the efficiency and the effectiveness of many text-based applications requiring fast and
high-quality navigation and access to their huge documents collection [STE 00]. Over
the past decade, a large number of clustering algorithms has been proposed in the lite-
rature [BER 02]. These algorithms can be classified along many criteria. For instance,
regarding their methodology, they can be either hierarchical, partitionnal, grid-based,
or density-based ; Regarding their final output, they can provide either flat or hierar-
chical clustering ; Regarding the nature of the membership function, they can be either
hard (crisp) or soft (fuzzy).

In this paper, our concern relates to the crisp hierarchical agglomerative algorithms
providing flat clustering. These algorithms start by initiating each document in a sin-
gleton cluster and then repeatedly merge the closest pairs of clusters until all clusters
have been merged into a single cluster that contains all documents. The produced re-
sult can thus be visualized as a dendogram, that can be cutted at a specific level to
keep only the partition of disjoint (flat) clusters.

One of the typical requirements for a good clustering technique in data mining is a
minimal input parameter [J. 00]. However, most current clustering algorithms require
several key parameters (e.g. number of clusters) and they are thus not practical for
use in real world applications. This is a difficult and often an ill-posed problem since
users often ignore the optimal parameters, and thus the final results depend on subjec-
tively chosen parameters that do not necessarily fits the dataset. Roughly, the goal of
any clustering algorithm is two folds : (1) Finding the optimal clustering solution (i.e.
quality of the resulting clustering), and (2) the optimal number of clusters. One op-
tion to avoid the need for parameters, is to evaluate the quality of different clustering
solutions along different number of clusters, in order to finally choose the solution
giving the best results. In cluster analysis, the procedure of evaluating the results is
known under the term cluster validity, and the indices that aims at comparing different
solutions with different parameters are known as relative validity indices [HAL 02b].

In this paper, we provide two main contributions. Firstly, due to their high com-
putational cost, relative indices are most often studied in a two or three dimensional
datasets [HAL 02b, MIL 85, DUN 74, DAV 79]. This surely allows a better vizuali-
sation of results, but do not reflect the reality of their performance in real world ap-
plications where data is often multidimensional. Thus, we have chosen to study their
performance in a widely used task : document agglomerative clustering. The study
includes the existing indices and a new index that we add to the list. Indices are com-
pared according to their ability to identify both the optimal clustering solution and the
optimal number of clusters.

Secondly, in literature, the determination of the optimal solution is performed a-
posteriori, after evaluating the different solutions obtained with the different number
of clusters [RAS 99, HAL 02b, MIL 85, TIB 00]. However, with such an approach,
an agglomerative algorithm needs to go until the end of the clustering process (i.e. the
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root cluster) before identifying the optimal solution, which is indeed a time and an
effort waste. Along those lines, we explore the feasibility of using the relative indices
as stopping criteria in agglomerative clustering algorithms. We propose a new method
that aims at enhancing the clustering process with context-aware decisions taken along
with validity indices. Experimental results show that the method is a step-forward in
using, with more reliability, validity indices as stopping criteria.

The remainder of the paper is organized as follows. After a brief overview on
cluster validity indices in the next Section, we describe in Section 3 our context-aware
method to enable the usage of these indices as stopping criteria. Experimental study
on four document collections is presented in Section 4. We conclude in Section 5 by
summarizing and drawing some future works.

2. Cluster Validity Indices

In general, we can distinguish two families of cluster validity indices : A first
family of indices compares a clustering solution with an a-priori specified structure
[HAL 02a]. In this family, indices can be either external or internal. External indices
evaluate a clustering solution by comparing it to an a-priori specified structure that
reflects the desired result over the dataset (e.g. F-Score measure, entropy, Jaccard
Coefficient, Rand Statistic). Internal indices evaluate a solution by comparing it to an
a-priori specified structure extracted using only quantities and features inherited from
the dataset itself (CPCC, Hubert T statistic). A second family of indices compares a
clustering solution to another one obtained with the same algorithm but with different
parameters or hypothesis [HAL 02b]. This can help finding the optimal parameters
that fits the dataset. Here we can find the so called relative indices. Since our concern
in this paper is to find the optimal solution across different numbers of clusters &, our
focus in the following will be on relative indices.

Relative validity indices turn around two main points : (i) Maximizing the com-
pactness between elements within the same clusters (intra-cluster), and (ii) Maximi-
zing the separation between elements within distinct clusters (inter-cluster). The usage
of these indices differs according to the type of algorithm that tends to optimize them
[ZHA 05, DUD 01]. For instance, using a hierarchical agglomerative algorithm, a par-
ticular validity index VI is calculated at each level for the different merging possibili-
ties. The pair of clusters that is selected to be merged, is the one that leads to a solution
that optimizes V'I.

According to their behavior, we can distinguish between two kinds of relative in-
dices' : (1) Indices scaling with k, making it hard to identify the optimal k (CH, KL,
HI, H2). This issue is often resolved by inspecting the "knee" on the graph, by the
gap statistics approach [TIB 00], or by the stability approach [BEN 02]. (2) Indices
not scaling with k, namely not systematically following the trend of k. In this case,
the optimal k& is more easily chosen as the point on the graph maximizing/minimizing

1. To check corresponding formulas, readers are invited to follow references.
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V' I. Due to their facility of interpretation, we choose to focus in the rest of this paper
on this last kind of indices. The other motivation is related to our goal in the follo-
wing section, which is to enable the usage of relative indices as stopping criteria, a
hard task that will get much harder if the optimal k& must be selected using relatively
sophisticated techniques. For this kind of indices, we can find those developed for ge-
neric clustering purposes (Dunn indices [DUN 74, BEZ 97], the Davies-Bouldin (DB)
index [DAV 79], (RMSSDT, SPR, RS, CD) [SHA 96], (SD, S_Dbw) [HAL 02b]), and
those developed for document clustering purposes [RAS 99] (C1, C2, C3, C4).

We added a new validity index H 3 to this list; it is inspired from the H1, H2 in-
dices proposed by Zhao [ZHA 04]. The difference is that H3 does not follow the trend
of k after having removed its sensitivity to k in an ad-hoc manner. It is computationally
less expensive than the other relative indices, since it deals with a collection centroid
to calculate the inter-cluster separation (i.e. complexity O(N)), while other indices
mostly see the inter-cluster as a pairwise similarity between clusters (i.e. complexity

O(N?)).

k n; .
D i1 i Doy sim(Dj, C;)

H3(k) =
*) (5 sim(Ci, 0)) /k

where sim denotes similarity between two objects, C; denotes the centroid of
a cluster S; containing n; elements, D; denotes the vector of document d;, and C
denotes the collection centroid which is the average vector of all cluster’s centroids.

3. Exploring Indices Usage as Stopping Criteria
3.1. Problem Definition

As mentioned earlier, the classical usage of relative validity indices for determi-
ning the % yielding the optimal clustering solution comes a-posteriori, after evaluating
the different solutions provided by a clustering algorithm throught all the possible
k values [MIL 85, RAS 99, HAL 02b]. However, in agglomerative algorithms, once
reaching the flat optimal solution at k¥ = «, all the remaining actions (until £k = 1)
are obviously a time and an effort waste because we will end up by considering the
solution provided at . Hence, finding a relevant stopping criterion is primordial. In
litterature, stopping criteria rely, in most cases, on input user parameters. For instance,
in agglomerative algorithms, these parameters can be a predefined number of clusters,
a minimum similarity between clusters, a maximum similarity gap between succes-
sive levels, etc. This kind of stopping criteria have serious limitations since users often
ignore the parameters that best fit the dataset?.

2. The interest here is in hard clustering algorithms. However, many stopping criteria are defined
quantifying the degree to which a model fits a dataset in probabilistic clustering algorithms.
Readers are invited to see [RIS 89, FRA 98] for examples of such criteria.
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A challenging approach to address this issue is to make use of relative indices
in order to develop an incremental agglomerative algorithm [DUD 01] able to stop
once reaching the "right" optimal solution in terms of a validity index at £ = a. An
intuitive approach is thus to go on with a clustering process while improving a specific
index in a stepwise fashion, and to stop once reaching a point k& = 3 where no further
(significant) improvement® can be done with any (merging) action. However, such an
ad-hoc approach suffers from ignoring, at the specific level 3, whether it has truly
reached the optimal solution (i.e. « = (3 ) or a better solution will come afterward if
it accepts a quality decrease at 3. The major problem is that validity indices are using
too much local information to take a global decision, e.g. stopping the process.

3.2. Our Method

3.2.1. Context-Aware Clustering

As one could notice, addressing the described issue is a tough and challenging
task. Along those lines, we developed a method that aims at enhancing the clustering
process with context-aware decisions taken along with validity indices. The end-goal
is to enable the usage of validity indices as stopping criteria where a First Drop (FD)
in the quality of a clustering solution can more relevantly indicates reaching the op-
timal solution. The underlying idea is to provide clustering algorithms with a wider
vision on the dataset partition, which will enable them to take decisions while having
in "mind” an “idea” on what could happen next if a specific action is undertaken. As
we are seeking the hierarchical agglomerative algorithms, the method applies the fol-
lowing heuristic at each level of the process : consider the M closest pairs of clusters,
then estimate the VI after trying to merge each of the M pairs. Among the mergings
that improve VI, merge the pair with the lowest Context Risk (C'R). If no merging
improves VI, merge the pair optimizing V 1.

Before merging any two clusters, the method examines the context of the resulting
new cluster candidate .S}, in terms of its K Nearest Neighbors KNN (i.e. surrounding
clusters). Suppose that assessing S, as a new cluster optimizes V' I. If the context
tells, though, that creating S, can lead to a global quality degradation in terms of
VI in next iterations, the method chooses another S, improving VI at a minimal
context risk. This surely implies a slower improvement in V' I, but has the advantage
of continuously pushing, as much as possible, risky merging actions entailing possible
future degradations for later processing. Taking the "safest" action at each level leads
an expected degradation to occur as late as possible during the process. Thus, a First
Drop (FD) in the clustering solution quality is likely to occur closer to the optimal
solution, which will offer the possibility to the algorithm to consider more relevantly
FD at k as a stopping criteria, and the solution provided at (k — 1) as the optimal
clustering solution.

3. While a significant improvement is required with indices scaling with k, a slight improvement
is enough for indices not scaling with k.
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Note that calculating VI for all the possible mergings between N clusters will
lead to a high complexity of O(N?) at each level of the process. We overcome this
by considering, at a given level, only the M closest pairs of clusters (M = 10 in our
experiments), since they form the most potential candidates to improve V1.

3.2.2. Context Space Composition

For each new cluster candidate S, a C'R expresses how risky can be assessing .S,
for the overall clustering quality in the expected upcoming mergings given the context
of S,,. Consider the two new clusters candidates S, and .S illustrated respectively in
Figures 1 and 2 with five context clusters each (51...55). We assume that S, with its
KNN neither too close nor too distant from its centroid, is more risky than .S, with its
KNN either too close or too distant from its centroid. More precisely, we decompose
the context space of a new cluster candidate .S, into three layers using four thresholds
t0, t1, 12, t3 :

1) Intra layer Clusters within this layer reduce C'R as they should not lead to a
quick drop in V1. For this, they have to be close enough to .S, therefore, likely to be
merged with S}, in next iterations without causing a significant degradation (compa-
ring to the r previous mergings) in the global intra-cluster compactness. As a matter
of fact, the clusters are getting larger over mergings, and thus the intra-cluster is conti-
nuously degradating. At a level k& where F'D did not occurred yet, we suppose that
all the previous mergings that caused degradations in the intra-cluster are acceptable.
According to this intuition, this layer is delimited by the thresholds {0 = 0 and ¢1
which is defined as the radius of a new cluster candidate S, augmented by the stan-
dard deviation of radius values obtained following the r previous mergings*. A radius
is the maximum distance between the centroid of ), and an element within .S,.

t1(Sp) = radius(S,) + StDev(radius(Sk—r...Sk—1))

2) Inter layer : Clusters within this layer reduce C'R as they should not lead to a
quick drop in V1. For this, they have to be distant enough from .S, therefore, not likely
to be merged with S, in next iterations, and keeping them outside would contribute
to improve (or at least not to degradate) the global inter-cluster separation ; This layer
is delimited by a first threshold ¢2 that we define as the average pairwise inter-cluster
distance between the KNN of S, reduced by the standard deviation of its homologous
values obtained following the r previous mergings. Getting the average separation
between clusters surrounding S;,, will give a hint on the minimum required inter-
distance to improve the local inter-cluster separation around S, which will most likely
improve the global inter-cluster separation. ¢t2(.S,) is calculated as follows :

t2(S,) = Avglnter(S,) — StDev(AvgInter(Si—y..Sk—1))

4. We fixed r to 10 in our experiments.
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K K .
1> dist(S;, S
Avglnter(S,) = ZZIEEKI_Z;;Q ) 1# ]

We decided to set the same margin m for the intra and inter layers in order to have
a balanced scores in both layers. Subsequently, the other inter-layer threshold ¢3 is
defined by t3 = t2 + ¢1, which implies m = t1 = t3 — {2

3) Risk layer : Clusters within this layer increase C'R because we consider that
they could lead to a fast drop in the global clustering quality, whether on the inter-
cluster or intra-cluster level. Actually, these clusters, if merged with S), in next itera-
tions, would contribute to a significant degradation in the intra-cluster compactness
since they are not enough close to S, and if not merged with S, in next iterations,
would not contribute to any significant amelioration in the inter-cluster separation
since they are not enough distant from .S,,. This layer is delimited by the tresholds ¢1
and 2 previously defined.

Figure 1. The three-layers context Figure 2. The three-layers context
space of the new risky cluster candidate space of the new non-risky cluster can-
Sp didate S,

3.2.3. Context Risk Calculation

Finally, to calculate C'R for S}, we use the following formula :

nl n2 n3
COR(S,) = 2(D R(S08,) — D T1(55,5,) — Y 12(5.5,)
i=1 j=1 h=1

R(S;,Sp), I1(S;,Sp), 12(Sh, Sp) denote the score given for a cluster S situated
respectively in the risk layer, intra layer, and inter layer. K refers to the predefined
number of nearest neighbors, which we fix to 10 in our experiments. n1, n2, n3 denote
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the number of clusters situated respectively in the risk, intra and inter layers. All the
scores are distributed along a [0,1] range according to their distances with the centroid
of S, (See Figures 1 and 2). Consequently, C'R varies between -1 (for a minimal risk)
and 1 (for a maximal risk). For a contextual cluster S,, having a distance d, with the
centroid of Sp, its score is calculated with respect to the following conditions :

if de <ty = I1(Sg, Sp) = Btz

elseif dy > ta = 12(S4, Sp) = "’177;‘2
elseif dy > t3 = I12(S,,Sp) =1
elseif t1 < dy < (H1+12)/2 = R(S4, Sp) = "2

elseif (t1+12)/2 < dp <12 = R(S,, Sp) = 272

4. Experimental Study
4.1. Document Collections

For our experimental study, we used a total of four datasets, whose general cha-
racteristics are summarized in Table 1. These are four distinct datasets extracted from
the Reuters corpus’ containing a set of documents being assigned by an expert to a
single topic each (e.g. economy, politics, sports). We avoided multi-topics documents
since we are dealing with crisp algorithms where a document can belong to only one
cluster. The study focuses on a set of indices not scaling with & for the reasons men-
tioned in Section 2 (DB [DAV 79], Dunn [DUN 74], m-Dunn [BEZ 97], (C1, C2, C3,
C4) [RAS 99], H3 ). Due to time constraints, we limited our experiments on DS3 and
DS4 to the H3 index since it is computationally more affordable on large datasets than
the other indices.

The vector-space model [SAL 89] is used to represent a document d by a vector
v in a multidimensional space, where each dimension represents a term expressed
by its ¢ f.idf weight. A cluster is represented by its centroid C', which is the average
of documents vectors V' contained in the cluster. To capture similarity between two
clusters, we use the cosines similarity measure between the two cluster’s centroids
after normalizing each centroid C' to be of unit length (||Cfiq4f|| = 1). The similarity
formula is then : sim(C;,C;) = cos(C;,C;) = CLC;. To calculate distances, we
use : dist(Ci, C]) =1- SZm(C“ Cj)

4.2. Evaluating Relative Validity Indices

Having already classified document collections, one efficient way for evaluating
relative indices is to compare their behaviors with those of external indices which we
suppose bear the optimal behaviours since they are based on a predefined structures

set by experts. Therefore, we run the agglomerative algorithm with a given index on

5. Reuters corpus, volume 1, English language, release date : 2000-11-03
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Dataset | # of documents | # of topics
DS1 100 22
DS2 200 24
DS3 500 38
DS4 700 53

Tableau 1. Summary of datasets used for our experiments.

a given dataset. Each solution provided at each level k of the process is evaluated by
means of the target relative index (predicted quality) and the F-Score measure (real
quality). As in [ZHA 05], the F-Score is calculated by first identifying for each class
of documents the cluster that best represent it, and then measuring the overall quality
of a solution by the average of the different classes qualities. Following this procedure,
we study the ability of each relative index to reach the predefined structure, in terms
of identifying both the optimal clustering solution and the optimal number of clusters.
Note that these two goals do not necessarily overlap. Actually, since algorithms are
error-prone, a “’real” optimal solution can lie under a number of clusters different from
the “real” optimal one.

4.2.1. On identifying the Optimal Clustering Solution

Firstly, we test the relative indices ability for evaluating a given clustering solution
in order to identify the optimal one. Approving the F-Score output as the "Gold
Standard" output at each iteration, we present in Figure 3 the indices results evaluated
from three different angles :

— Their correlation with the F'-Score : By studying correlation between predicted
values and real values, we can figure out to which extend a relative index can behave
similarly to an external index.

— The optimal F-Score reached across the different % : It represents the optimal
clustering quality that a V' I can reach if it shares the same optimal k& with F-Score.
Values express also to which extend, (merging) actions based on a given index can
lead to correct/incorrect partitions among clusters.

— The F-Score reached at the optimal value of VI : This is a good indicator of
the overall solution quality that a V' I can reach. By comparing these values to the
previous values (i.e. optimal F-Score), one can check to which extend the optimal
solution provided by a VI is close to the real optimal solution.

4.2.2. On Identifying the Optimal Number of Clusters

Secondly, we test the relative indices ability for identifying the optimal & which
we define as the number of distinct topics in a dataset. We present in Figures 4 the
indices results evaluated from two different angles :

— k at the optimal value of VI, which represents to which extend a V' I, with its
actual trend for determining the optimal k, is able to approach the real optimal k value.
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Figure 3. Indices ability to identify the optimal clustering solution in each dataset
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Figure 4. Indices ability to identify the optimal number of clusters in each dataset

— k at the optimal value of the F-Score, which represents to which extend a V' I, if
it had the trend of F’-Score for determining the optimal k, is able to approach the real
optimal k value.

4.2.3. Discussion

After examining the different graphs in Figures 3 and 4, we can conclude the fol-
lowing remarks :
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First, we can say that most relative indices provide a satisfying performance for
evaluating solutions in comparison to our external index. Actually, they behave enough
closely to the external index (Correlation with F in Figure 3), and are also able to
attain a maximal F-Score comparable to the optimal one attained by the F-Score
measure itself runned separately (Optimal F in Figure 3). In addition, as one could
expect, indices developed for generic purposes (e.g. DB, Dunn, m-Dunn) are among
the indices giving the worth results for evaluating solutions. This can be explained by
their weak ability to deal with the sparse nature of our datasets which usually require
more representative quality estimation for the global partition.

Second, indices show some "rigid" trends for detecting the optimal k over different
datasets. If we look at the optimal £ in terms of each index (K @ optimal index) in
Figure 4, we can notice that C3, C4, H3, DB, Dunn, m-Dunn, although not scaling
systematically with k, are keeping similar relative trends towards the optimal k& over
DS1 and DS2. This is indeed an important shortcoming since the optimal % is supposed
to depend uniquely on the dataset. Nevertheless, if they had flexible trends like the F-
Score, they would show much more variations in defining their optimal £ (K @ opti
F), showing more significantly how much an index, regardless of its current trend, is
able to detect the optimal k. From this point of view, we can conclude that CI, H3,
Dunn are among the best indices for detecting the optimal &.

Third, basing on the previous remark, we can deduce that the gap between optimal
k in terms of each index and the "real" optimal k (K @ optimal Index in Figure 4)
is not highly informative vis-a-vis the error rate, since it highly depends on both the
current trend of each index and the predefined optimal % that reflects only a certain
level of granularity that could be too specific or too generic. From this point of view,
the underlying gap can simply inform us on which indices are more suitable for cases
requiring rather high k or low k.

Finaly, in spite of their "good" performance for evaluating a solution, most indices
are still long way from reaching the "real" optimal solutions. This can demonstrated
in Figure 3 by the large gap between the optimal F-Score (Optimal F) and the F-Score
reached at the optimal £ in terms of an index (F @ Optimal Index). The gap is related,
among others, to the indices difficulty to detect the optimal k. For instance, an index
showing a trend to high number of clusters, will provide a bad clustering quality if
the optimal solution lies under a small number of clusters. This is the case of C'3, that
gives an optimal solution at k¥ = 192 with F' = 0, 18, while the real optimal solution
was lying under k¥ = 17 and F' = 0.82. An exception to this gap is noticed with the
H3 index, whose high ability for reaching the optimal % is surely affecting its high
ability for reaching the optimal clustering solutions.

4.3. Evaluating the Context-Aware Method

In this section, we explore the added-value of enhancing a clustering process with
context-awareness in order to enable validity indices usage as stopping criteria. As
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stressed earlier in this paper, the goal is to approach, as much as possible, the solu-
tion provided before F'D to the optimal solution. We excluded from the following
experiments some indices that showed to be inappropriate for the context-aware me-
thod because they provide either too unstable curves to be stabilized (e.g. Dunn, m-
Dunn) , or too stable curves in our datasets to show clearly the effect of the context
enhancement (e.g. C3).

4.3.1. Approaching the Optimal Number of Clusters

Firstly, we study to which extend the method allows F'D to approach the optimal
number of clusters. Therefore, we demonstrate in Figure 5 the complete agglomerative
clustering process (k = n — 1) divided into three parts :

— P1: This part goes from the initial set (k = n) to the last point before F'D. Thus,
using a VI as a stopping criterion will lead the process to the last point of P1.

— P2 : This part goes from F'D to the optimal clustering solution. It represents the
part that must be processed but would not if V' I is used as a stopping criterion.

— P3: This part goes from the optimal solution until the root cluster (k = 1), which
form the unnecessary part that would be performed in vain if a VI is not used as a
stopping criterion.
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DB~ chx . DB+ chx I I ’
08 08 : ; ;
L, it ; ; ML "
& H " & H "
3
E (4-ch NN - E Gt et
I ‘ P8 Unecessan) PR —— 73 (Unecessany]
]
;, C2-ctx [ 7 - u P2 (Between FD & Opt) % Co4ctx --_# P2 (Between FD & Opt)
Q ) )
’ 1 (Before D] ' PL(Before L)
Cl-che ! ! B e
[=3 (1
0 n 4w 60 8 100 120 0 50 100 150 00 250
Number of custers Number of dusters
OptiK=38 DS3 " DS4

| N |
| H3
| mP3{Unecessary) H | 3 {Uneceseary)
H3+etx & H+ch
P2 Between FO & Opt) - P2 (Betueen FD & Opt)

0 w0 a0 e [P 0 20 40 so0 sog "PHEeforefD]

validity Indices
Validity Indice:

Number of dusters Numberof clusters

Figure 5. The added-value of the context-aware method in approaching the optimal k
in each dataset

By observing Figure 5, we can quickly notice the added-value of the context-aware
method. On the first hand, it avoids a clustering algorithm from processing all the
P3 parts which is a time and an effort waste. On the other hand, it contributes to
reduce P2, since in most cases, F'D occurs remarkably closer to the optimal solution.
This will surely enable us to consider more relevantly a solution before F'D as the
optimal solution. The contribution is made clear especially when observing the H3
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index in DS1 : while the optimal solution is found at £ = 19 with F' = 0.58, using
the index alone entails a first drop to occur at £ = 53 with F' = 0.33. However, when
adding context-awareness to the process, a first drop occurred exactly at £k = 19 with
F = 0.60, which is simply the ideal intended result.

4.3.2. Quality of the Optimal Solutions

Since a "context-aware" algorithm is no more taking the merging decisions that
optimizes V' I, one may imagine that the method, although approaching the optimal
k, can deteriorate the quality of the solutions given by an index. However, results in
Figure 6 show the opposite ; actually, the graphs illustrating the F-score at the opti-
mal value of each VI assess that with the context-aware method, we can still have a
comparable and sometimes better clustering quality than the standard method without
involving any context-awareness. In average, using the method led the F'-Score at the
optimal value of VI to a decrease of 0.06%, 0.10% in DS2, DS3, and to an increase
of 3.11%, 1.88% in DS1, DS4 respectively.
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Figure 6. F-Scores obtained at the optimal solution in terms of VI used with and
without context in each dataset

4.3.3. Quality of the Final Solutions

More informative than the quality of the optimal solutions, is the quality of the
final provided solutions for the user when stopping before F'D. In Figure 7, these
solutions, provided with/without using context-awareness, are evaluated also in terms
of the F-Score measure. In average, using the context-aware method contributed to an
F-Score increase of 14.96%, 20.71%, 8.88%, 21,21% in the DS1, DS2, DS3, DS4

respectively.
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Figure 7. F-Scores obtained just before F'D with and without context in each dataset
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Figure 8. The indices values along the different number of clusters, with and without
using context in DS1

4.3.4. Discussion

In Figure 8, we can see more precisely the effect of enhancing the process with
context-awareness in DS1°, which results in a slower but more reliable evolution in
the indices values. For each graph representing an index, we set three points : (a) re-

6. Demonstrations has been limited to DS1 for space constraints.
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presents the optimal intended solution, (b) represents the point where an algorithm
would stop if no context were involved, (c) represents the point where an algorithm
will stop when involving context. By examining the different graphs, we can notice
that (c) always approaches considerably (a) comparing to (b), which prove the effi-
ciency of the proposed method. Interestingly, the context-aware method appears to
be sensitive to the risk degree of an index. This means that the "level of precaution”
that it takes depends on how risky an index is. Thus, when adding context-awareness
to the relatively "safe" indices like C'1 and C4, the decisions taken are very close to
those taken without context, which results in two similar curves. However, when ad-
ding context-awareness for "risky" indices like C2 and H 3, their values evolve much
slower than without context, keeping wider gaps between curves.

5. Conclusion and Future Works

On the first hand, we studied the usage relative validity indices in the context of
agglomerative document clustering, testing their ability to identify both, the optimal
clustering solution and the optimal number of clusters. Experiments performed on
four document collections show that most relative validity indices behave enough clo-
sely to external indices for evaluating clustering solutions. However, they show some
difficulties to detect the optimal number of clusters due to their “rigid” trends over
different datasets. On the other hand, we explored the feasibility of using relative in-
dices as stopping criteria, which is a crucial part for avoiding an algorithm from trying
all the possible parameters before assessing the “right” solution, which is a time an
effort waste. We described a new method enhancing an agglomerative algorithm with
context-awareness to allow a more reliable usage of validity indices for this purpose.
Experimental results show that our method allows an algorithm to considerably ap-
proach the optimal solution which is classically identified a-posteriori. As for future
works, we aim at evaluating our method with more clustering algorithms and on larger
datasets. Given the fact that documents often belong to multiple topics, an application
of the method is planned under incremental soft clustering algorithms allowing over-
laps between clusters. Furthermore, we believe that a more flexible and significant
definition of the context space is still needed to improve results.
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