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RÉSUMÉ. Dans cet article, un modèle de recherche d’information fondé sur la théorie des 
ensembles flous est considéré. Tout d’abord, nous montrons que le mécanisme de recherche 
dans un tel modèle peut être défini en termes d’inclusion graduelle. Cette approche est 
fortement liée à la notion de division dans un contexte de bases de données relationnelles. 
Dans un deuxième temps, nous mettons en évidence plusieurs axes d’extension de l’inclusion 
graduelle, l’objectif étant de rendre l’indicateur d’inclusion (et donc le mécanisme de 
matching document-requête) plus tolérant, aux exceptions notamment. Il est montré que 
l’utilisation de tels indicateurs d’inclusion tolérante permet de réduire le risque d’obtention 
de réponses vides. 

ABSTRACT. In this contribution, a fuzzy-set-based information retrieval model is considered. 
First, we show that the retrieval mechanism of such a retrieval model can be defined in terms 
of graded inclusion. This approach derives from the notion of division of fuzzy relations in 
the framework of Database Management Systems. Then, we point out different lines of 
extension of the graded inclusion aimed at making it more tolerant (to exceptions, in 
particular). It is shown that the use of such tolerant inclusion indicators reduces the risk of 
obtaining empty answers.  

MOTS-CLÉS : Modèle flou de recherche d’information, inclusion graduelle, inclusion tolérante, 
relations floues, termes d’index pondérés, requêtes pondérées. 

KEYWORDS: Fuzzy Information Retrieval, graded inclusion, tolerant inclusion, fuzzy relations, 
index term weights, query weights. 
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1. Introduction 

In the literature, several fuzzy approaches to extend Boolean information 

retrieval systems have been defined (see, e.g., (Radecki, 1979), (Bookstein, 1980), 

(Buell, 1982), (Yager, 1987), (Bordogna et al., 1995)). All these approaches 

introduce weights to extend both the documents’ representation (based on index 

terms) and the queries.  

The objective of this contribution is to show how the notion of a tolerant graded 

inclusion can be of use in the query-document matching process, so as to make it 

more flexible. The idea is to consider that a set E (of keywords) can sometimes be 

viewed as (approximately) included in a set F even when some elements of E are not 
in F. In this paper, we point out different rationales that appear relevant to found 
such a notion of tolerant graded inclusion. 

The paper will be organized as follows: in section 2, it will be shown that the 

inclusion operation plays a key role in Boolean IR, and the connections between 

Boolean information retrieval and the division of relations is established. In 

particular, in front of a set of expected keywords stated in a query, it is shown that 

the retrieval mechanism may be seen as the division of a binary relation describing 

the associations between documents and keywords by a relation containing the 

keywords of the query.  In section 3, this view is generalized to the case of fuzzy 

relations, i.e., whose tuples are weighted, which gives birth to several types of 

semantics, depending on the meanings of the weights and the nature of their 

interaction. It will be seen that the query-document matching process is strongly 

connected with different possible interpretations of the inclusion degree of (fuzzy) 

sets. Section 4 is devoted to different lines of extension of the graded inclusion 

indicator so as to make it more tolerant in order to limit the risk of obtaining empty 

answers. The conclusion summarizes the main points of the paper and proposes 

some perspectives for future work. 

2. Boolean information retrieval and the division of relations 

IR systems are aimed at the handling of large sets of documents and retrieving 

those documents which correspond to a user need. Documents generally consist of 

texts which are indexed to represent their contents (keywords or index terms) and 

queries are based on the specification of terms used to identify topics of interest 

(Salton et al., 1984). In most of the commercial IR systems based on the Boolean IR 

model, a query is used to find the documents which are related to a given topic, i.e., 

which contain (and/or do not) a given set of keywords. For example, one may look 

for documents talking about “fuzzy sets, fuzzy inclusion, fuzzy relations” excluding 

“possibility theory, measures”. By describing a document through a set of keywords 

d and the query through the set of expected keywords P on the one hand and the set 
of excluded keywords N on the other hand, two operations are required to decide 
whether the document is relevant or not. In fact, P must be contained in d (P ⊆ d) 

CORIA 2008 - Conférence en Recherche d'Information et Applications

322



 

and no element must be a member of both d and N (d ∩ N = ∅). This shows the 

central role played by set operations (inclusion and intersection) in information 

retrieval. 

In the framework of the relational model of data, a universe is modeled as a set of 

relations (in a mathematical sense, i.e., a relation Ri is a subset of the Cartesian 

product of some domains) which can be manipulated with the help of specific 

operators known as the relational algebra (set operations, selection, projection, ...). 

Among these operations, the division of the relation R(A, X) by S(A) denoted by 
R[A÷A]S, where A is a set of attributes common to R and S, aims at determining the 

X-values connected in R with all the A-values appearing in S. This operation can be 
defined equivalently in the following ways: 

– x ∈ R[A÷A]S ⇔ ∀a ∈ S,  (x, a) ∈ R                             (1) 

– x ∈ R[A÷A]S ⇔ S ⊆ Ω–1
(x)      where Ω–1

(x ) = {a | (x, a) ∈ R}.                      (2) 

Let us consider the Boolean IR model in which each document d is described as a 
set of terms d = {t1, ... , tm}, with ti ∈ T, the set of the index terms. Moreover, let us 

restrict to the case in which a query q looks for those documents indexed by a set of 

expected terms P = {t'1, ... , t'n}. The set of documents of the archive may be 

represented as an unnormalized relation (UR) where a tuple has the form: <d, t1, ... , 
tm> or as a normalized relation (NR) where the information stored in the previous 

tuple is split through m tuples: <d, t1>, ... , <d, tm>. The keywords appearing in the 
query may be seen as a unary relation (P) and the query may be answered as the 

division of NR by P. 

Example 1. Let us consider the relations in Table 1: 

 ARCHIVE                    EXPECTED TERMS 

doc. keyword       keyword 

d1 

d1 

d1 

d2 

d2 

d2 

d3 

d3 

k1 

k3 

k4 

k1 

k2 

k3 

k2 

k3 

 k1 

k2 

k3 

Table 1: relations representing an archive and a query  

The result of the division ARCHIVE [keyword÷keyword] EXPECTED-TERMS 

returns the document d2, which corresponds to the only document containing at least 

the three desired keywords {k1, k2, k3}.♦ 
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3. Fuzzy information retrieval and the division of fuzzy relations  

IR systems are based on models characterized by three main components: the 

representation of documents, the query language, and the matching mechanism. 

The documents’ representation is generated by the indexing process which 

produces surrogates of the document information content, generally consisting of 

index terms, manually associated with the documents or automatically extracted 

from them (Salton et al., 1984).  

Users submit their information needs to the system through queries expressed in 

the system query language. Generally, queries consist of atomic selection criteria 

(which are basically single terms, sometimes weighted), and aggregation operators 

(which can be either implicit in the query, as in the Vector Space model, or explicit). 

The matching mechanism evaluates a user’s query against the representations of 

documents and retrieves those documents which are considered to be relevant. The 

relevance assessments are determined by a retrieval function which is peculiar to 

each model. In the following subsections, the two main aspects of a fuzzy model of 

information retrieval are briefly described. In such a model, the retrieval function 

can be formalized in two steps. In the first step the function E evaluating queries 

constituted by a single (weighted) term is defined: E: D × Q' → [0, 1] in which Q' is 
the set of queries with a single (weighted) term. Function E computes the Retrieval 

Status Value (RSV) constituting the degree to which a document d matches a query q 

∈ Q'.  In the second step, a function E* is defined as: E*: D × Q → [0, 1] (where Q 
is the set of all the legitimate queries) which evaluates the final RSV of a document, 

reflecting the satisfaction of the whole query; by interpreting the operators AND, OR 

and NOT, as fuzzy intersection, union and complement respectively. 

3.1. Fuzzy document representation 

The first step towards a fuzzy IR model was to extend the representation within 

fuzzy set theory by associating with each document-term pair a weight F(d, t) ∈ [0, 
1], named index term weight, indicating the degree of aboutness or significance F(d, 
t) of document d with respect to term t (Waller et al., 1979) (Buell et al., 1981). The 
computation of F(d, t) is generally based on the number of occurrences of t in the 
document d and in the whole archive D.  

The introduction of the index term weight made possible to represent a document 

as a fuzzy set of terms (Buell, 1982): R(d) = {µd(t)/t, t ∈ T} in which µd(t) = F(d, t). 

Based on this fuzzy documents’ representation the retrieval mechanism has been 

extended with the ability to rank the retrieved documents in decreasing order of their 

significance with respect to the user query. In fact, in this case the retrieval function 

evaluating an atomic query consisting of a single term t yields F(d, t): 

E(d, q) = F(d, t)   ∀ q = t ∈ T ∪ Q'.                    

CORIA 2008 - Conférence en Recherche d'Information et Applications

324



 

3.2. Fuzzy queries 

To make the Boolean query language less limited in its expressiveness, a fuzzy IR 

model such as that described in (Bookstein, 1980) extends atomic selection criteria 

by introducing query term weights. An example of Boolean weighted (or fuzzy) 

query is: <t1, w1> AND (<t2, w2> OR <t3, w3>) in which t1, t2, t3, are search terms 

and w1, w2, w3 ∈ [0, 1] are numeric weights. 

The concept of query weights has raised the problem of their interpretation: 

several authors have realized that the semantics of query weights should be related to 

the concept of “importance” of the terms. The weight semantics determines the 

definition of function E; as weights are introduced at the level of single query terms, 

function E is defined on the sets D and Q', in which Q' = T × [0, 1]. Function E is 
then evaluated for a document d ∈ D, a term t ∈ T and its query weight w ∈ [0, 1].  

3.3. Division, graded inclusions  and fuzzy implications 

The answer to a query q may be devised as the generalization of the Boolean case 

described in Section 2, namely the division of two fuzzy relations R and S. In this 
case, the result of the division is defined as a fuzzy set, i.e. a fuzzy relation R[T÷T]S, 
and a natural extension stems from expression 2 where the usual set inclusion 

operator is changed into a grade of inclusion g: 

    µR[T÷T]S(d) = g(S ⊆ Ω
–1
(d))                                             (3) 

Ω–1
(d) being a fuzzy set of keywords defined as: 

             Ω–1
(d) = {µ/t | µ/(d, t) ∈ R and d ∈ D}. 

The notation µ/t expresses that the membership degree of t to to Ω–1
(d) equals µ.  

Then the semantics of the division depends on both the choice of the inclusion 

grade and the intended meaning of the weights associated with the tuples in relations 

R and S (Bosc et al., 1997). 

A view of the inclusion consists in defining the grade of inclusion g(S ⊆ Ω–1
(d)) 

using  a fuzzy implication (denoted by → in the following), and then we obtain the 

indice: 

g(S ⊆ Ω–1
(d)) =  min t∈S (µS(t) → µR(d, t))                     (4) 

Two different interpretations may be distinguished depending on the nature of the 

interaction of the degrees in the two relations. In the first case, the degree µS(t) is 

seen as a threshold and the complete satisfaction requires that this threshold is 

attained by µR(d, t) for each value t of S. When the threshold is not reached, a 

penalty is applied. This behavior is obtained using a residuated implication (or R-

implication) (Fodor et al., 1999), denoted by →R-i, and defined as: 
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p →R-i q = sup {u ∈ [0, 1] | ⊤(p, u) ≤ q}                            (5) 

where ⊤ stands for a triangular norm. Any R-implication may be rewritten: 

p →R-i q = 1 if p ≤ q, f(p, q) otherwise 

where f(p, q) expresses a partial satisfaction (a value less than 1) when the 
antecedent p is not reached by the conclusion q. The minimal element of this class of 

implications is Gödel’s implication: 

p →Gö q = 1 if p ≤ q, q otherwise 

which is obtained by choosing ⊤(a, b) = min(a, b) in formula (5). Other 

representatives of R-implications are Goguen’s (respectively Lukasiewicz’) 

implication obtained with ⊤(a, b) = a × b (respectively max(a + b – 1, 0)): 

p →Gg q = 1 if p ≤ q, q/p otherwise 

p →Lu q = 1 if p ≤ q, 1 – p + q otherwise. 

In the second interpretation, µS(t) defines the importance of value t (and then the 
degree µR(d, t) is modulated). In the logical framework imposed by an implication, 

the underlying notion is that of a guaranteed satisfaction when this importance is 

under 1: when µS(t) < 1 the requirement is not completely important, and it can be 

forgotten to some extent. The complete satisfaction requires that µR(d, t) equals 1 for 
each value t of S whatever its importance and µR[T÷T]S (d) = 0 only if for at least one t 
in S, both µS(t) = 1 (the requirement has the maximum level of importance) and µR(d, 
t) = 0 (the tuple does not fulfill the requirement at all). This behavior is modeled by 

using an S-implication (Fodor et al., 1999) denoted by →S-i, as follows: 

p →S-i q = ⊥(1 – p, q) = 1 – ⊤(p, 1 – q)                                (6) 

As it is the case for R-implications, there exists an infinity of such implications and 

their most commonly used representative, Kleene-Dienes’ implication, defined as: 

p ⇒KD q = max(1 – p, q) 

is the minimal element obtained from expression 6 with the smallest co-norm, i.e., 

the maximum. Another S-implication is obtained from expression 6 using the 

probabilistic sum, namely Reichenbach’s implication defined as:  

p ⇒Rb q = 1 – p + pq. 

It turns out that Lukasiewicz’ implication is also an S-implication obtained from 

expression 6 with ⊥(a, b) = min(a + b, 1).  

One can notice that the regular division is recovered from formulas 3-4 in the 

presence of regular relations due to the fact that any fuzzy implication coincides with 

the usual one in that case (in particular 1 → 0 = 0 and 1 → 1 = 1). 
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3.4. Comments and an example 

This approach is logical and conjunctive and an “absorption effect” occurs: the 

division operator only retains the smallest degree of implication between S and R. 
The S-grades, i.e. the query term weights w, can express either a threshold or an 
importance, which makes sense in the context of document retrieval. If we assume 

that the degree µ attached to a term t in a document d refers to the relevance of d 
with respect to t, the weight w tied to the expected term e stands for a minimal 

relevance with the threshold interpretation while it represents the importance of e 
with the second interpretation. Consequently, the solutions suggested before for the 

division of fuzzy relations may be an interesting basis for plausible interpretations of 

document retrieval. 

Example 2. Let us consider the archive represented by the fuzzy relation in Table 2 

and the queries q and  q' represented by the fuzzy relations in Table 3. 

 

 t1 t2 t3 t4 
d1 1 0.9 1 0.2 

d2 0.7 0.6 0.3 0.8 

Table 2. Relation representing an archive of documents as a fuzzy relation R 

 

 t1 t2 t3 t4 
q 1 0.4  0 0.6 

q' 0.6 0.6 0.3 0.5 

Table 3. Each row is a fuzzy relation S representing a query 

 

 query weight semantics d1 d2 
q importance Kleene-Dienes 0.4 0.6 

  Reichenbach 0.52 0.76 

  Gödel 0.2 1 

q' threshold Goguen 0.4 1 

  Lukasiewicz 0.7 1 

Table 4. Result of the queries of Table 3 referred to the archive of Table 2. 

Depending on the semantics chosen, the result of q and q' are given in Table 4.♦ 

4. Fuzzy information retrieval and tolerant graded inclusions 

4.1. Some limitations of the classical inclusion 

It may happen that a query calling on a division – thus on an inclusion –, even of 
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fuzzy relations, leads to an empty answer, while some elements would have been 

almost satisfactory if some tolerance could take place. This line is the basis for the 

design of tolerant inclusion operators, but it is important to notice that such operators 

can be used directly in user queries and not only to repair “failing” queries. We now 

review four types of situation where different ideas of tolerance make sense. 

Let us consider that the query (relation S) contains 20 keywords (t1,  …, t20) and 
that the associations document-keyword are represented by the binary relation R as 
follows: 

{<d1, t1>, <d1, t6>, <d1, t20>,  
  <d2, t1>, <d2, t2>, …, <d2, t19>,  
  <d3, t1>, <d3, t2>, …, <d3, t18>}. 

Neither d1, nor d2, nor d3 is satisfactory as to the division of R by S. Nevertheless, if 
it seems legitimate to think that d1 is definitely inadequate, d2 and d3 are almost 

satisfactory since they are associated with respectively 19 and 18 terms of the query. 

Thus, one may be interested in distinguishing between these quite different situations 

through a tolerance to exceptions. An “all or nothing” approach will accept d2 and d3 

provided that a 10% ratio of exceptions is allowed. It is also possible to adopt a 

graded view according to which exceptions are a matter of preferences and then their 

ratio (or number) is a matter of degree. For instance, satisfaction decreases from full 

acceptance (if exceptions are under 8%) to total rejection (above 12%). 

In the previous situation, exceptions are treated on a quantitative basis, i.e., 

according to their number. So, it is impossible to compensate a large number of 

small exceptions, i.e., to account for the notion of low-intensity exceptions which 

may only occur in the context of fuzzy relations. For instance, let us consider the 

fuzzy relations: 

R = {1/<d1, t1>, 1/<d1, t2>, 1/<d2, t1>, 0.8/<d2, t2>, 1/<d3, t1>, 0.9/<d3, t2>},  

S = {1/t1, 0.8/t2, 0.1/t3, …, 0.1/t10}. 

If Gödel’s or Goguen’s implication is used, the result of the division of R by S is 
empty while S is “almost” included (in Zadeh’s sense, i.e. E ⊆ F ⇔ ∀x ∈ U, µE(x) ≤ 
µF(x), where E and F are two fuzzy sets defined on the universe U) in the set of 
keywords associated with d1, d2 and d3 in the dividend R. Of course, the notion of 
qualitative exceptions may be dealt with in a gradual way, i.e., an exception is more 

or less a low-intensity one, so as to prevent from a sharp behavior of the tolerance 

mechanism. 

A third kind of approach to query relaxation is well-known in the field of 

information retrieval. It corresponds to taking into account the notion of synonymy 

between the keywords, using a thesaurus (Salton et al., 1984). Then, it is possible to 
extend the query in the following way: a keyword t from the query is replaced by (t 
OR t'1 OR ... OR t'n) where the t'i’s are the synonyms of t present in the thesaurus. 
Here again, in general, the notion of synonymy may be a graded one in order to 
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express nuances, and we describe in the following (Subsection 4.3.1) a tolerant 

graded inclusion that takes into account this notion of approximate synonymy. 

In the preceding case, the tolerance conveyed by the query relaxation process may 

also be viewed as enlarging the dividend relation. One may think of a dual 

mechanism whose effect is to restrict the divisor. From a semantic point of view, 

such a modification can be based on the notion of “significance” of the elements of 

the divisor. Several approaches to significance can be envisaged, for instance, in the 

presence of fuzzy relations, the grades assigned to the index terms of the divisor 

could be diminished according to the attainment of a threshold. 

These various types of tolerance are studied and formalized in the next two sections 

where tolerant inclusion operators are proposed. 

4.2. Dealing with exceptions 

As mentioned previously, an approach to softening the inclusion can be based on 

some tolerance to exceptions. This can be understood in two ways depending on the 

nature of the exceptions which can be either quantitative or qualitative. 

4.2.1. Quantitative exception-tolerant inclusion 

In the continuation of the first case evoked in Section 3, some tolerance may be 

introduced on the basis of a number of exceptions with respect to the universal 

quantifier present in formula 4. The definition of a quantitative exception-tolerant 

inclusion E ⊆tol F is based on the “ignoration” of the fact that some elements of E are 
not sufficiently (or even not at all) in F. In other words, a certain number of 

keywords of the query can be more or less ignored depending on the desired level of 

relaxation. The principle adopted is to weaken the universal quantifier into a relaxed 

quantifier “almost all” (see (Kerre et al., 1998), (Zadeh, 1983) for fuzzy relative 
quantifiers). In the following, the quantifier “almost all” induces grades defined as 

follows: 

µalmost all(0) = wn = 0, µalmost all(1) = w0 = 1, 

µalmost all(1 – i/n) = wi expresses the degree of satisfaction when i out of the n 
elements of the query are ignored. 

By definition: 1 = w0 ≥ w1 ≥ … ≥ wn = 0 

and if we denote: k1 = max {j | wj = 1}, k2 = max {j | wj > 0},  

the quantifier allows for the total “ignoration” of k1 exceptions and the partial 
ignoration of up to k2 exceptions. Basically, the idea is to search for the best 
compromise (value k) such that k elements of the F are in E and k is compatible with 

almost all, which leads to the following definition of the quantitative exception-

tolerant inclusion: (Bosc et al., 2006b) 
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∀d ∈ D, g(E ⊆quant-exc F) =  maxk ∈ [1, n] min(αk, wk-1)                   (7)                             

where αk is the k
th
 smallest implication degree (µE(x) → µF(x)) and wk is the degree 

of ignoration wk = µalmost all(1 – k/n), issued from the quantifier “almost all” for set E 
of cardinality equal to n, i.e., n implication values intervene in formula 10. It is 

worth noticing that: i) formula 4 is recovered by formula 10 when the universal 

quantifier is used (w0 = 1, w1 = … = wn = 0), i.e., when no exception is admitted, ii) 

as expected the result obtained is a superset of that returned by the non-tolerant 

division, and iii) formula (10) rewrites: 

∀d ∈ D, g(E ⊆quant-exc F) = mini ∈ [1, n]  max(αi, wi)                      (8) 

which establishes a clear connection with formula 4. Indeed, any implication value 

insufficiently satisfactory (from the smallest one to the largest one) is possibly 

replaced by the degree of satisfaction corresponding to the number of values ignored 

so far (according to “almost all”). When wi is 1, total ignoration takes place, whereas 

if wi is 0, the associated element αi is completely taken into account as such. It 

appears that grades of ignoration define degrees of guaranteed satisfaction, i.e., if p 
implication values are ignored, the satisfaction level is at least wp.  

A quantitative exception tolerant division is obtained by replacing in formula 3 

g(S ⊆ Ω–1
(d)) by g(S ⊆quant-exc Ω

–1
(d)). Obviously, the user can choose the fuzzy 

implication to be used in formulas 10 and 11 so as to specify the role played by the 

degrees of the divisor (threshold or importance). Furthermore, if the quantifier Q1 is 

included in Q2 (in Zadeh’s sense), the result of the tolerant division founded on Q1 is 

included in that of the tolerant division division based on Q2 (Bosc et al., 2006a). 

Example 3. One considers the quantifier “almost all” defined as: 

µalmost all (f) = 0  if f ∈ [0, 0.75],  
µalmost all (f) = 1 if f ∈ [0.95, 1], 
µalmost all (f) linearly increasing if f ∈ [0.75, 0.95]. 

In this perspective, the degrees issued from the quantifier are w0 = 1, w1 = 0.75, w2 = 

0.25, w3 = … = w10 = 0 if s contains 10 elements. Using Gödel’s implication and the 

following extensions of R and S: 

R = {0.1/<d1, t2>, 0.2/<d1, t3>, 0.5/<d1, t4>, 0.7/<d1, t5>, 0.9/<d1, t6>, 1/<d1, t7>, 
1/<d1, t8>, 0.2/<d1, t9>, 0.5/<d1, t10>, 0.8/<d2, t1>, 1/<d2, t3>, …, 1/<d2, t10>}, 

S = {1/t1, 0.9/t2, 0.9/t3, 0.9/t4, 0.9/t5, 0.8/t6, 0.7/t7, 0.4/t8, 0.2/t9, 0.1/t10}, 

the result of the non-tolerant division is empty since <d1, t1> and <d2, t2> are missing 

in R. On the other hand, when the tolerant division is performed, the grade obtained 

by d1 is: 

min(max(0, 0.75), max(0.1, 0.25), max(0.2, 0), max(0.5, 0), max(0.7, 0), max(1, 0), 

…, max(1, 0)) =  

max(min(0, 1), min(0.1, 0.75), min(0.2, 0.25), min(0.5, 0), min(0.7, 0), min(1, 0), 

…, min(1, 0)) = 0.2 
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and for d2 :  

min(max(0, 0.75), max(0.8, 0.25), max(1, 0), … , max(1, 0)) =  

max(min(0, 1), min(0.8, 0.75), min(1, 0.25), min(1, 0), … , min(1, 0)) = 0.75. 

For d1, the two implication values 0 and 0.1 are ignored thanks to w1 and w2, while 

for d2, only the first implication value 0 is ignored (thanks to w1).♦ 

4.2.2. Qualitative exception-tolerant inclusion 

In Subsection 4.2.1, exceptions have been dealt with in a quantitative way. In this 

context, the quantitative inclusion of E in F expresses that “almost all elements of E 
are included in F according to the chosen implication”. An alternative approach is to 

take a qualitative view and to consider a qualitative inclusion operator expressing 

“all elements of E are almost included in F according to the chosen implication”. 

Then, exceptions are also taken into account according to the idea of “almost 

inclusion”, which leads to a qualitative view. In other words, the idea is to (more or 

less) compensate the initial value of the implication when it expresses a sufficiently 

“low-intensity” exception (Bosc et al., 2007). 

Intuitively, the idea is to consider exceptions with respect to the inclusion in the 

following sense: if one looks for the inclusion of E in F, compensation takes place 

for an element x such that µE(x) and µF(x) are sufficiently close to the situation of 
(full) inclusion. It seems reasonable to consider that the closeness in this situation is 

a matter of degree rather than based on a crisp boundary. For instance one may think 

that in reference to a, a ± 0.1 is totally acceptable, a shift beyond 0.3 cannot be 
tolerated and the satisfaction is linear in-between. Of course, this does not make 

sense for regular relations, for which exceptions correspond to the case where µE(x) 
equals 1 and µF(x) is zero, thus to a “full” exception.  

If an S-implication is considered, full satisfaction, i.e. degree 1 is obtained when 

the antecedent is close to 0 and/or the conclusion is close to 1. As a consequence, 

“low-intensity” exceptions occur only for (then the compensation mechanism applies 

to) fairly high values of the initial implication degrees. From this, it appears that such 

a qualitative tolerant mechanism is not useful for reducing the risk of obtaining 

empty answers (even if it is of interest for the design of a tolerant division as such) 

and we move to the case of R-implications. 

Let us first recall that any R-implication is completely satisfied if the conclusion 

(let us denote it by µF(x)) attains the antecedent (let us denote it by µE(x)). 
Consequently, the intensity of an exception depends on the difference between µE(x) 
and µF(x). Intuitively, if this difference is positive but small enough, we are in the 

presence of a “low-intensity” exception, which is somewhat tolerable. In this context, 

the compensation mechanism may affect any implication value (a large one, i.e., 

close to 1, as well as a small one), which makes it convenient for dealing with empty 

answers. The definition of the qualitative exception-tolerant inclusion is: 

∀d ∈ D, g(E ⊆qual-exc F) = minx ∈ E µE(x) →R-i (µF(x) + δ)                         (9) 
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where δ  = 0 if µE(x) – µF(x) ≥ β,  
                  µE(x) – µF(x) if µE(x) – µF(x) ≤ α, 
     linear in-between. 

A qualitative exception tolerant division is obtained by replacing g(S ⊆ Ω–1
(d)) by 

g(S ⊆qual-exc Ω
–1
(d)) in formula 3. 

Example 4. Let us consider the document collection D represented by the binary 
relation R = {0.7/<d1, t1>, 0.4/<d1, t3>} and the query S = {1/t1, 0.1/t2, 0.6/t3}. 

The usual division based on Gödel’s implication delivers an empty answer due to the 

absence of t2 in d1. If the qualitative exception-tolerant division is performed with α 

= 0.1, β = 0.3, the result returned is: 

res = {min(1 →Gö 0.7, 0.1 →Gö 0 + 0.1, 0.6 →Gö 0.4 + 0.05)/<d1>} = {0.45/<d1>} 

which is no longer empty.♦ 

4.3. Modifiying the operands of the inclusion 

In this section, tolerant inclusions are designed on the basis of some semantic 

transformation of the operands. In order to get a relaxation of the original inclusion, 

the tolerant one may either enlarge the right-hand side argument: 

tol-inc1(E, F) ≡ E ⊆ F'                                                    (10) 

where F' is a superset of F, or diminish the left-hand side argument: 

tol-div2(E, F) ≡ E' ⊆ F                                                                (11) 

where E' is a subset of E, or both. In the next two subsections, the principle guiding 
these two types of modifications of the operands of an inclusion is discussed. 

4.3.1. Synonymy-based tolerant inclusion 

The rationale to enlarge the right-hand side argument is to compose it with a 

synonymy relation expressing that some keywords may be somewhat close 

semantically speaking. In the Boolean context, this is usually done thanks to an 

equivalence relation (reflexive, symmetric and transitive) – represented by a 

thesaurus (Salton et al. 1984) –, which can be extended to a similarity relation 
(where transitivity is replaced by: ∀x, y, z sim(x, y) ≥ supz min(sim(x, z), sim(z, y))) 
in the fuzzy framework. Other variants can be used where the transitivity is skipped 

(proximity relation). Whatever the type of resemblance relation used (denoted later 
by rsb), the right-hand argument (let us denote it by F) is dilated in the sense of the 
adjunction of any element of the referential which is close to an element initially 

present in it. The idea is to consider that an element x missing in F can be replaced 
by another x' which is present and such that x' is a synonym (to some extent) of x.  

CORIA 2008 - Conférence en Recherche d'Information et Applications

332



 

The resemblance-based tolerant inclusion is defined as follows: 

g(E ⊆rsb-tol F) =  minx ∈ S µE(x) → µdil(F)(x)                                  (12)  

which is a refinement of expression 10 and dil(F) is a dilated variant of F obtained 
using the resemblance relation rsb, i.e.: 

µdil(F)(x) = supx' ∈ U ⊤( µF(x'), µrsb(x, x'))                                     (13)                                                    

where ⊤ is a triangular norm. It is worth noticing that if a value initially absent can 

be added to F (with a given degree of membership), the degree of a value initially 

present can also be increased. The less demanding the norm used in formula 13, the 

larger the final dilated set obtained and then the greater the result of the approximate 

inclusion. A resemblance-tolerant division is obtained by replacing g(S ⊆ Ω–1
(d)) by 

g(S ⊆rsb-tol Ω
–1
(d)) in formula 3. Let us mention that the approach proposed here can 

be seen as a generalization of that described in (Miyamoto et al., 1986) in the sense 
that this author only considers the t-norm minimum for the dilation process (formula 

13), but it also differs from that approach in the sense that we use a matching process 

based on a graded inclusion, while in (Miyamoto et al., 1986) the interaction 
between the query weights and the document weights rests on a minimum. 

Example 5. Let us consider the document collection D represented by the following 
binary relation: 

R = {0.3/<d1, grand prix>, 0.6/<d1, speedcar>, 0.4/<d1, automobile>,  
        1/<d2, race>, 0.7/<d2, formula 1>}, 

the query S = {1/<grand prix>, 0.5/<formula 1>} 

and the following graded synonymy relation (where the pairs 1/(x, x) are omitted and 

α/(y, x) is implicit when α/(x, y) is present): 

rsb = {0.7/(grand prix, race), 0.6/(automobile, speedcar),  
           0.5/(automobile, formula 1), 0.9/(speedcar, formula 1)} 

The regular division of R by S using Goguen’s implication delivers an empty result. 

The dilation of R with the norm minimum (the largest one) yields:  

dil(R) = {0.3/<d1, grand prix>, 0.3/<d1, race>, 0.6/<d1, speedcar>,  
                0.6/<d1, automobile>, 0.6/<d1, formula 1>, 1/<d2, race>,  
                0.7/<d2, grand prix>, 0.7/<d2, formula 1>, 0.7/<d2, speedcar>,  
                0.5/<d2, automobile>}, 

and the resemblance-tolerant division of R by S with Goguen’s implication in 

formula 12 returns the relation res = {0.3/<d1>, 0.7/<d2>}).♦ 

4.3.2. Significance-based tolerant inclusion 

In the preceding section, one of the arguments of the inclusion, namely the one on 

the right-hand side, is extended in order to have a better chance to get a non-empty 

answer to the division. A dual point of view consists in reducing (eroding) the left-
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hand side argument and the key question is about the rationale of the erosion 
mechanism. In the information retrieval context, the general idea is to reduce the 

query considering that weakly significant keywords can more or less be removed. It 

turns out that different examples of the notion of significance can be pointed out 

depending on the nature (fuzzy or not) of the query into play. 

If S is a fuzzy query (i.e., a fuzzy set of keywords), it can be eroded by removing 

the elements with a small grade (recall that such elements may cause an empty 

answer with implications like Gödel’s or Goguen’s). 

Example 6. Let us consider the document collection D represented by the binary 
relation R = {0.7/<d1, t1>, 0.4/<d1, t3>} and the query S = {1/t1, 0.35/t2, 0.6/t3}. 

The usual division of R by S based on Gödel’s (or Goguen’s) implication in formula 

(4) delivers an empty answer due to the absence of t2 in d1. If elements of the query 

with a degree less than 0.4 are considered non-significant and removed according to 

the erosion mechanism used in the significance-based tolerant division, the result 

obtained is: res = {min(1 →Gö 0.7, 0.6 →Gö 0.4)/<d1>} = {0.4/<d1>}.♦ 

On the other hand, with a non-weighted query, the notion of significance is not as 

straightforward. A simple strategy could be based on the fact that, most often, the 

order of the keywords in the query reflects the relative importance that the user 

attaches to these keywords. Then, one could eliminate the last one, or the last two 

ones if necessary, and so on. Another idea could be to use an ontology in order to 

construct some clusters of keywords from the initial query. The keywords inside a 

cluster would satisfy a given relationship with respect to the ontology, and the 

keywords which do not belong to any cluster would be discarded from the query. 

This issue is left for future works since it is not obvious what type of relationship 

could be used as a good basis for such a clustering process.  

Since regular sets are just a special case of fuzzy ones, all these cases can be 

modelled in the fuzzy framework as follows. The significance-based tolerant 

inclusion of E by F is defined as follows: 

g(E ⊆sgf-tol F) =  minx ∈ U µero(E)(x) → µF(x)                                 (14)  

which is a refinement of expression 11 and ero(E) is an eroded variant of E obtained 
using one of the previously evoked mechanisms. A significance-based tolerant 

division is obtained by replacing g(S ⊆ Ω–1
(d)) by g(S ⊆sgf-tol Ω

–1
(d)) in formula 3. 

5. Conclusion 

In this paper, a fuzzy model of information retrieval has been considered and an 

interpretation of the document-query matching process in terms of a division of 

fuzzy relations (which relies on the notion of inclusion) has been presented. This 

works stems from the fact that in the Boolean IR model, the concept of inclusion 

plays a central role in retrieval. We have pointed out different ways of extending the 

inclusion in order to make it more tolerant, which leads to different tolerant matching 
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mechanisms and reduces the risk of obtaining empty answers to an IR query.  This 

paper focused on semantic aspects and, as a perspective for future work, it would 

now be worthy to implement a search engine based on the principles described here 

in order to assess its performances in terms of precision and recall (for example by 

means of experiments on the TREC or INEX collections) and compare them with 

those obtained by classical systems such as Smart, Okapi or Mercure. 

6. Bibliography 

Bookstein A., « Fuzzy requests: an approach to weighted Boolean searches », J. of the 
American Society for Information Science, vol. 31, 1980, p. 240-247. 

Bordogna G., Carrara P., Pasi G., « Query term weights as constraints in fuzzy information 

retrieval », Information Processing and Management, vol. 27, 1991, p. 15-26. 

Bosc P., Dubois D., Pivert O., Prade H., « Flexible queries in relational databases – The 

example of the division operator », Theoretical Computer Science, vol. 171, 1997, p. 281-
302. 

Bosc P., Hadjali A., Pivert O., « Preference-based divisions to overcome empty answers », 

Proc. of the 3rd Multidisciplinary Workshop on Advances on Preference Handling (M-
PREF’07), in conjunction with VLDB’07, Vienna, Austria, September 24, 2007. 

Bosc P., Pivert O., « About approximate inclusion and its axiomatization », Fuzzy Sets and 
Systems, vol. 157, 2006a, p. 1438-1454. 

Bosc P., Pivert O., Rocacher R., « A propos de division usuelle et approchée de relations 

floues », Technique et Science Informatiques, vol. 25, 2006b, p. 631-660. 

Buell D.A., « An analysis of some fuzzy subset applications to information retrieval 

systems », Fuzzy Sets and Systems, vol. 7, 1982, p. 35-42. 

Buell D.A., Kraft D.H., « Threshold values and Boolean retrieval systems », Information 
Processing  & Management, vol. 17, 1981, p. 127-136. 

Fodor J.,Yager R.R., « Fuzzy-set theoretic operators and quantifiers », in: Fundamentals of 
Fuzzy Sets – The Handbook of Fuzzy Sets Series, D. Dubois and H. Prade (Eds.), Kluwer 
Academic Publishers, 1999, p. 125-193. 

Kerre E.E., Liu Y., « An overview of fuzzy quantifiers – Interpretations », Fuzzy Sets and 
Systems, vol. 95, 1998, p.1-22. 

Miyamoto S., Nakayama K., « Fuzzy information retrieval based on a fuzzy pseudo-

thesaurus », IEEE Transactions on Systems, Man and Cybernetics, vol. 16, 1986, p. 278-
282. 

Radecki T., « Fuzzy set theoretical approach to document retrieval », Information Processing 
and Management, vol. 15, 1979, p. 247-260. 

Salton G., McGill M.J., Introduction to modern information retrieval, McGraw-Hill Int. 

Book Co., 1984. 

CORIA 2008 - Conférence en Recherche d'Information et Applications

335



Waller W.G., Kraft D.H., « A mathematical model of a weighted Boolean retrieval system », 

Information Processing & Management, vol. 15, 1979, p. 235-245. 

Yager R.R., « A note on weighted queries in information retrieval systems », J. of the 
American Society for Information Science, vol. 38, 1987, p. 23-24. 

Zadeh L.A., « A computational approach to fuzzy quantifiers in natural languages », 

Computer Mathematics with Applications, vol. 9, 1983, p. 149-183. 

 

CORIA 2008 - Conférence en Recherche d'Information et Applications

336


