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ABSTRACT. GVC is a new information retrieval model that is based on Graph Vertices 
Comparison (GVC). It implements a new similarity measure to compare documents and 
users' queries based on graph matching. In this model, graphs are composed of two types of 
nodes. Documents, queries and indexing terms are viewed as vertices of this bipartite graph 
where each edge goes from a document or a query –first type of nodes- to an indexing term –
second type of nodes-. Edges reflect the relationship that exists between documents or queries
on the one hand and indexing terms on the other hand; they are set according to the tf.idf 
principal. Our method implements similarity propagation over graph edges using an iterative 
process. We evaluate the model using 4 different collections (TREC 2004 Novelty Track, 
CISI, Cranfield and Medline). We show that considering precision at 5 documents, GVC 
outperforms Okapi model from 9% to 62%, depending on the collections.
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1. Introduction & related works

Searching for relevant information is a difficult task, and deciding whether or not 
a piece of information can fulfill a user’ need is somewhat complex. Winning this 
challenge mainly implies finding out how well a given document or chunk of text 
matches a user’s query. Therefore, the main question to be answered is how similar -
a document and a query are. In IR as in many other fields, especially those related to 
cognition [Gentner et al, 1993], [Medin et al, 1990], such as recognition, clustering 
and categorization, case-based reasoning and generalization, similarity acts as a key 
element.

Still, this concept of similarity remains difficult to circumvent and there is no 
universal similarity assessment that can be measured straightforwardly [Goodman, 
1972]: it is always needed to define in what regard two objects or items are similar. 
Any similarity measurement is, therefore, concept and representation dependent 
[Gärdenfors, 2004]. Many authors define similarity on two levels: the surface level 
and the structural level. Surface similarity is defined as an attribute-related function
while structural similarity is defined as a relation-oriented function. Surprisingly, 
several cognitive psychology studies [Bracke, 1998] suggest that structural similarity 
favors precision while surface similarity -–as used in most IR models-- favors recall. 
For that reason and because nowadays IR systems generally handle huge amounts of 
information and thus are more expected to perform well with respect to top-
precision, we focus our interest on structural similarity.

Since relations are the main features used in structural similarity computation and 
since graphs are common representations that easily capture the structure of a wide 
range of relational data and knowledge, we consider graph theory. Moreover, graph 
theory already plays a major role in many specific information-related domains such 
as Web Information Retrieval [Henzinger, 2000][ Sahami et al, 2004][ Page et al, 
1998], Text Information Retrieval [Gómez et al, 2000][Quintana et al, 1990][
Siddiqui et al, 2005], Social Networks Analysis [Freeman, 1979][ Newman, 2003] 
and science citation, and co-citation networks analysis [Jeh et al, 2002]. Computing 
similarity based on graph structure has also been explored in the specific context of 
database schema matching [Melnik et al, 2002]. [Blondel et al, 2004] shows that the 
Web, as a citation graph, is structurally similar to the two-node graph (hub →

authority) and expresses the approach of hub and authority analysis depicted in 
[Kleinberg, 1999] as a graph mapping issue. Approaches using graph models can be 
split into two categories: basic approaches that use immediate neighboring nodes to 
compute the similarity of two vertices and sophisticated approaches such as 
SimRank [Jeh et al, 2002] that use the entire graph structure.

In this paper, we further investigate these aspects and propose a precision-driven 
method for Information Retrieval (IR). This method is based on graph vertices 
comparison. The overall goal of this method is to enhance the core IR process of 
matching documents against queries in order to retrieve relevant information from a 
set of documents. Relevance is defined as an end-users’ satisfaction measurement 
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with respect to the needs they express in queries. In our approach, documents, 
queries and indexing terms are represented as nodes of a directed bipartite graph. In 
such a representation, graph vertices are either documents/queries (first type of 
nodes) or indexing terms (second type of nodes). Graph edges connect indexing 
terms to the documents and queries they represent. The resulting IR graph model 
facilitates the use of structural similarities in the process of matching documents and 
queries. This process is apprehended as a graph vertices comparison. Thus, 
retrieving relevant documents is likened to searching for document nodes similar to a 
given query node in the IR graph.

The remainder of this paper is organized as follows: Section 2 presents the GVC 
information retrieval model based on graph comparison. Section 3 discusses the 
proposed approach in light of those presented in [Kleinberg, 1999] and [Blondel et 
al, 2004]. It also presents primary tests and puts forward some improvements. 
Section 4 deals with implementation issues. Section 5 explains the experimental 
results. Finally, Section 6 provides some perspectives.

2. Graph vertices comparison

2.1 Overview

A text IR system is a software that manages the storage of textual information 
(documents or chunks of text) and provides efficient means to retrieve them at 
request. It combines two major processes: the indexing process and the matching 
process. The main objective of the indexing process is to provide a representation of 
the contents of both documents and queries. The matching process is often based on 
a similarity measure used to compare users' queries to the indexed documents.

We use the vector based model as a starting point to build our graph based IR 
system. More precisely, we consider documents/query and indexation terms to be the 
vertices of a bipartite graph whose edges connect documents and queries to the 
indexation terms they contain. The adjacency matrix of this bipartite graph can be 
deduced from the documents-terms matrix, built during the indexing process (see 
figure 1).

The matching process, which is at the core of our concerns and contribution, 
ranks the documents so that those most likely to be relevant (those with the higher 
similarity score in comparison to the query) are placed at the top of the retrieved 
document list.  Considering the GVC model, the matching process computes the 
similarity scores between vertices of the modeling graph. Similarity scores are not 
locally computed, but rather take into account the whole graph structure.
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Figure 1. Building the bipartite graph starting from document-indexing term 
matrix.W=[wij] where wij represents the weight of the jth term in the ith document

The next section addresses the theoretical basis of our proposal. it introduces 
graph comparison in a way that goes beyond the solely IR considerations and that 
lies within the field of graph mining and analysis [Dkaki et al, 2006].

2.1 Background

The starting point of our matching process approach is a graph vertices 
comparison method proposed by Blondel et al. [Blondel et al, 2004]. We improved 
this method that consider the comparison of the vertices of two different graphs (see 
below) in order to properly take into consideration the case of self-similarity needed 
in IR systems where only one bipartite graph is considered and where this graph 
nodes have to be compared to each other. The purpose of such method is to 
determine a similarity measure for computing the resemblance between graph 
vertices of two graphs. 

For example, the problem of computing hub and authority scores of a Web 
search engine to increase top accuracy as proposed in [Kleinberg, 1999] can be 
considered as a graph vertices comparison problem [Blondel et al, 2004] where the 
Web, as a citation graph, is compared to the two-node directed-graph hub →

authority. The formula for computing hub and authority scores of Web pages can be 
expressed as follows:

[1]

B is the adjacency matrix of the graph of the web. Matrix is obviously 
the adjacency matrix of the two-node graph hub→authority.
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More generally, when considering two structurally similar graphs (same kinds of 
nodes and relationships), one to be analyzed (the target) and the other serving as the 
model (the source), we can map the first onto the second in a transfer-like approach 
[Bracke, 1998] by identifying a context-sensitive similarity measure between their 
sets of nodes. The similarity between two vertices i and j respectively from target 
graph and source graph is computed by examining the similarity scores between their 
related vertices (vertices pointing to i or j and vertices pointed by i or j in the 
analyzed and model graphs). The subjacent idea is a similarity mutual reinforcement: 
a score is associated to each couple of nodes of the graphs and, at each step of the 
iterative process, the value of this score is updated by the sum of the similarity 
scores of the predecessors and the similarity scores of the successors in the two 
graphs. The similarity score Sij between vertex i of target graph and vertex j of 
source graph can be expressed as follows:

[2]

EA and EB are, respectively, the edge sets of target and source graphs.

[2] can be written in the more compact matrix form:

[3]

Sk and Sk+1 are the similarity matrix at iteration k and k+1. B and A are the 
adjacency matrices of target graph and source graph.

[3] defines the similarity between nodes as a reflexive and recursive function. 
This triggers two fundamental questions: one related to the algorithm convergence 
and the other to the best choice for similarity initial values (S0).

• Convergence

Convergence of [3] is uncertain but this problem can be overcome by 
normalizing the similarity matrix S at each iteration step. [3] is then rewritten as 
follows:

[4]

In this case, the Sk series convergence is not entirely assured but at least, 
whatever the initial similarity values, the sequence admits two adherence values: one 
limit for S2k series and another for S2k+1 series (see [Blondel et al, 2004] for proof). 
The limit of sub-series S2k can be used as the similarity matrix between vertices of 
source and target graphs.
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• Initialization

There are two possible ways to choose an initial similarity matrix S0. These cases 
are related to the awareness of a priori resemblance between vertices of the two 
graphs. If there is no known information, then it seems natural that all node pairs 
must be associated to the same score of similarity (e.g. 1). Thus S0 is a matrix full of 
ones and –the chance of being similar is equal for all pairs of vertices. Such initial 
similarity for matrix S0 produces quite good results as mentioned in [Blondel et al,
2004]. Otherwise, previously known similarity scores (e.g. some attributes-
dependent surface similarity) can be used to build matrix S0. This second case will 
be discussed in more detail in the implementation section.

3. GVC model

3.1. Preliminary test

In the following example, the graph represented in fig. 2 is compared to the 
graph hub→authority. Initial similarity matrix is the matrix full of ones. The 
obtained results are unsatisfactory if not to say odd. They oppose commonsense -or 
at least the results of an in-degrees/out-degrees analysis. Indeed, examining table in 
fig. 2, we notice that vertices a, d, f, g, h, i and j get the same authority score. This 
calls for a method enhancement

Figure 2. A graph used for preliminary test purposes and the results of its 
comparison with two-nodes graph hub→authority

3.2 Model enhancement

There exist several reasons that can explain the unrealistic results obtained 
above. Perhaps the most important is that the method does not take into account the 
notion of similarity inheritance or flooding similarity within a graph. When 
considering a concept such as authority, the inheritance must somehow play a role in 
similarity evaluation over a graph’s set of nodes. In other words, relation to an 
authority likely confers some kind of authority.
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[4] has to be modified to comply with this similarity inheritance principle. The 
propagation and the retro-propagation of similarities within a graph are likened to a 
“flooding” of similarities [Melnik et al, 2002]

In our approach, similarity propagation is considered as a graph transitive-
closure of target and/or source graphs. This is a more sophisticated approach than 
the one in [Melnik et al, 2002] that leads to a more wide-ranging function of gradual 
attenuation of inheritance “over generations”.

Figure 3. Example of graph transitive closure. The graph to the left is transformed 
into the graph to the right. There is only one added edge from node 1 to node 4 
because there are only two indirect paths of length 2 from 1 to 4.

Note that in [Melnik et al, 2002] this attenuation is solely depth-dependent. In 
our approach, adjacency matrices A and B of source and target graphs are modified 
to take into account a depth-attenuated flooding similarity. We also consider that 
inheritance from a “forebears” node of nth generation of a vertex v is proportional to 
the number of paths of length n separating this forebear from v. This sounds 
reasonable: the more a vertex has forebears that share a given property, the greater 
its chances of possessing this same property. Still, the bare proportionality is 
somewhat questionable. We, therefore, break this linear proportionality relationship. 
Adjacency matrices of target and source graphs are formulated as follows:

and                      [5]

gA and gB are monotonically increasing functions from [0, 1] onto [0,1]. They can 
be exponential or stair functions. fA(n) = �.n and fB(n) = ��n where �.and ��are positive 
constants lower than 1, appear to be good instantiation of  attenuation functions. 

The use of [5] overcomes the disadvantages depicted above (figure 2.) as shown 
in the following results (table 1)
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Vertex A B C D E F G H I J
Hub 0.0 0.12 0.12 0.15 0.15 0.05 0.05 0.27 0.27 0.27
Authority 0.36 0.37 0.09 0.0 0.65 0.0 0.0 0.0 0.0 0.0

Table 1. Enhanced results from the comparison of graph in figure 2 with the graph 
hub→authority

3.3 Graph self comparison

The core IR process is the retrieval of relevant information in a set of documents. 
Relevance is defined as a measurement of documents' concordance with the user's 
needs expressed in a query. Using graph comparison for IR assumes that we look for 
document vertices similar to a given query node. This is a search for similar nodes of 
the same graph which implies graph self-comparison where target and source graphs 
are the same. Unfortunately, when assessing graph self-comparison, there are cases 
where s(i, j) ≥ s(i, i). In fact, this opposes a condition that a similarity measure must 
fulfill. The measure we obtain is positive defined ∀(i, j), s(i, j) ≥ 0-, symmetric -∀(i, 
j), s(i, j) = s(j, i)- but it does not always verify ∀(i, j), s(i, i) = s(j, j)≥ s(i, j).

Satisfying this condition is, of course, not mandatory since very common 
“similarity” measures in IR, such as the dot product, do it. Nevertheless, to avoid this 
“weakness”, we normalized similarity matrix SAB by dividing each value SAB(i, j) by 
the product of self-similarity SAA(i, i) of vertex i in graph A and SBB(j, j) of vertex j 
in graph B. The final algorithm for graph vertices comparison (the one we use in the 
case of graph self-comparison) is described in paragraph 3.4.

3.4 Algorithm

Our final proposal for graph vertices comparison is described in the algorithm 
below. This algorithm compares graph vertices from two graphs. It will be later
rewritten and refined for the purpose of IR which involves a single sparse graph. As 
we argued above, this iterative algorithm converges to the similarity matrix SAB
between vertices of graph A and those of graph B.
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Figure 4. Algorithm for graph similarity computation. ∗• and • are term-to-term 
matrix multiplication and division

4. Implementation

In this section, we give a brief description of how we implemented our graph 
comparison algorithm for IR purposes as a special instance of the algorithm in figure
4.

• First, we construct a directed bipartite graph representing documents and 
query -as described in section 2- from the result of indexing process of the Lemur 
toolkit [The Lemur toolkit]. 

• Second, we compute initial values for the similarity scores between 
document and query nodes, and between term nodes (matrix S0). We choose the 
cosine function to set the initial values of similarity scores. S0 is then a (m+n)*(m+n) 
matrix where m is the total number of terms and n is the total number of documents 
(this includes the query which is seen as a document). Let G be the (m+n)*(m+n) 
adjacency matrix of the bipartite graph representing the sets of documents and 
indexing terms, the initial value of similarity score between node i and j is computed 
as follows:

[6]
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Because we are interested only on the similarity scores between documents and 
they can be computed separately with which between terms we can then rewrite the 
graph vertices comparison algorithm in figure 4 as follows

Figure 5. Graph vertices comparison algorithm for Information Retrieval System
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This algorithm converges for the same reasons the algorithm in figure 4. 
Conducted experiments (see below) show that a few iterations are required to 
achieve the convergence.

The algorithm is mainly based on matrix products, since then the computational 
complexity of each iteration is Θ(Max(n,m)3). This reduces the applicability of our 
method. Our system, that uses the Colt libraries [Colt package] on a Pentium PC 
with 1 Go of RAM, can only handle graphs that do not exceed few thousands of 
nodes. For this reason, experiments use small data collection. Section 6 will give 
some hints of how our method can be used as a component of an IR system that can 
handle large document collections.

5. Experiments & Results

As we mentioned above, the purpose of our work is to provide a precision-
oriented IR model based on graph vertices comparison. In other words, we want our 
system to retrieve more relevant documents within the top retrieved documents. To 
evaluate the performance of the GVC model, we consider four common test 
collections (namely TREC 2004 Novelty Track [TREC], CISI, Cranfield and 
Medline [Glasgow IDOM]). Table 2 lists features about these test collections. Terms 
occurring in documents are stemmed, filtered using a common stop list, and 
weighted following the tf-idf function. We used Lemur toolkit [The Lemur toolkit] to 
index these four collections. Our similarity measure is compared to Okapi as 
implemented in Lemur. The different parameters are set as follows:

K1= 1.2,
B = 0.75,
K3 = 7.0,
Expanded query term TF weight = 0.5 and
Number of feedback terms = 50.

TREC1 CISI CRAN MED
Number of documents 1057 1460 1400 1033
Number of terms 2157 5889 4614 9467
Number of evaluated queries 50 60 56 30
Average number of relevant documents2 166 48 14.2 23.2
Average rate relevant documents 15.70% 3.28% 1.01% 2.24%

Table 2. Statistics about the test collections

1 TREC column shows averages over the 50 test collections
2 Only selected queries are considered.
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For all collections, we evaluated our model on only the queries which had at least 
10 associated relevant documents. So, for the CISI collection where there are 112 
queries, only 60 queries were selected. The CRANFIELD collection has 225 queries, 
among which 56 queries were selected. The MEDLINE collection has a total of 30 
queries, all of which were selected. The average precisions at 5, 10 and R are 
computed for both our model and the Okapi model. The table bellow shows the 
performance statistics of the two models on the four collections.

Graph comp Okapi Enhancement
TREC 0,307 0,243 26,34%
MED 0,543 0,32 63,39%

CRAN 0,34 0,215 57,99%
CISI 0,209 0,123 69,65%

Table 3. Compared average precision for TREC, Medline, Cranfield and CISI. 
Comparison with table 4 show relatively good results at top retrieved documents

These tables --especially when considering CISI, MEDLINE and CRANFIELD 
collection-- confirm that our model performs better than the Okapi model. The 
differences in terms of performance over the four test collections can be explained 
by the differences over the average number of terms per documents and the number 
of relevant documents. The fact is that average number of relevant terms per 
documents is quite low for TREC. This shows that our model performances are high 
when the average number of terms per documents and the rate of relevant document 
are high. This along with algorithm complexity consideration point out that the best 
use of our model is within the framework of a MAC/FAC [Forbus et al, 1995] 
retrieval system (see below). Confrontation of table 3 and table 4 favors the use of 
GVC as a precision-oriented IR model.

Graph comp Okapi Enhancement
5 10 R 5 10 R 5 10 R

TREC 0.396 0.363 0.321 0.363 0.359 0.304 8.99% 1.14% 5.76%
CISI 0.483 0.412 0.276 0.298 0.279 0.209 61.87% 47.72% 31.68%
MEDLINE 0.733 0.672 0.569 0.527 0.484 0.369 39.24% 38.82% 54.29%
CRANFIELD 0.517 0.419 0.357 0.37 0.291 0.259 39.8% 44.16% 37.16%

Table 4. Compared precision at top n for TREC, CISI, Medline and Cranfield
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6. Conclusion

In this paper, we proposed and discussed a new model for defining similarity 
measures between vertices of two graphs by extending methods previously submitted 
in [Jeh et al, 2002][ Melnik et al, 2002][ Blondel et al, 2004][ Kleinberg, 1999]. The 
proposed method has been designed to support the case where the two compared 
graphs are identical. This paved the way to our proposal for a new IR model. This 
model views documents and queries, along with indexation terms, as vertices of a 
bipartite graph. Retrieving task is achieved as a graph self-comparison process and 
retrieved documents are nodes that are satisfactorily similar to a query node.

The experiments show that our method outperforms the Okapi model. Perhaps 
another decisive performance test –which we intend to carry out-- would be this that 
compares our method to similar methods that try to capture and use indirect 
relationships between documents and indexing terms as it is the case in Latent 
Semantic Indexing (LSI) approaches for example. We believe that the comparison 
with LSI models could turn in favour of our methods as suggested by published 
results in [Cherukuri et al, 2006], [Srinivas et al, 2006].

We also strongly believe that we can further enhance the obtained results by 
taking into account previously known information about existing similarities between
documents. Such information can be contained in classifications, thesauri or 
ontologies. Also, there are indications that our method will offer new perspectives 
for XML retrieval, which can be achieved by using multipartite labeled graphs.

The main drawback to our method is its high computational complexity which 
makes it unaffordable in the context of large document collections. Still, we can use 
it in a MAC/FAC [Forbus et al, 1995] architecture. MAC/FAC is a two-stage 
process in which a computationally cheap filter (MAC) is used to select a restricted 
subset of likely good candidates that are conveyed to a more accurate and 
computationally expensive filtering process (FAC). Our graph vertices comparison 
method can be used as a FAC filter in association with a MAC method which will 
easily and quickly eliminate unnecessary documents. This is roughly what 
Kleinberg's HITS algorithm [Kleinberg, 1999] does in order to reduce the 
computational its cost. HITS isolates a relatively small citation subgraph related to a 
given topic before detecting the authoritative 'sources' it contains.
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